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Abstract
We propose a nonequilibrium Green’s function approach to calculate the ac
conductance of various finite-length carbon nanotubes. The simulated ac
conductance differs significantly from that for infinite-length carbon nanotubes.
At the low-frequency limit, the profiles of the quantized conductance are still
observable in the finite-length carbon nanotubes, but many more peaks appear
on the conductance curves. We also show that the conductance of finite-length
carbon nanotubes oscillates as a function of the ac frequency. The dependence
of the oscillation on the lengths, helicities and defects of the carbon nanotubes
are also investigated. The knowledge we gain from this research will help us
make carbon-nanotube-based interconnects or other ac devices in the future.

Carbon nanotubes (CNTs), since their discovery, have been considered as one of the most
promising building blocks for future nanoelectronic devices [1]. Among various applications,
the use of CNTs as interconnects is quite promising [2–4]. CNTs have several superior features
compared to those of traditional metallic interconnection materials: (1) CNTs have good dc
conductance due to their quasi-one-dimensional structures [5, 6]; (2) no dangling bonds exist
on the surface of CNTs; thus, their transport properties are not affected by the surface scattering
or the surface roughness when the feature size of the interconnect shrinks; (3) C–C bonds
within CNTs are one of the strongest bonds in nature, thus making CNTs chemically stable in
the process flow. However, effective models are needed to quantitatively evaluate the transport
properties of CNTs. Researchers have simulated ac transport in infinite-length CNTs by using a
nonequilibrium Green’s functions technique [7]. In this paper, we focus on the ac conductance
of finite-length CNTs because they are more practical for interconnecting nanoscale circuits
and systems.

The system we consider is a finite-length CNT between two electrodes, L and R, with ac
signals applied to the electrodes. We employ the tight-binding π -electron model for the CNT,
and link its ac conductance to its Green’s functions at steady-state. Usually, these Green’s
functions are calculated via direct matrix inverting from their definition. However, for finite-
length CNTs such as a (10, 10) CNT (here (m, n) is the characterization for CNT helicity [14])
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of about 13 nm, the dimension of the matrices to be inverted is about 4000. Not only will it
be time-consuming but also quite inaccurate to invert such large dimensional matrices. Here
in this work we employ the recursive Green’s function technique [8, 9] to build them up. With
this approach, the dimension of the matrices to be inverted is determined by the helicity of the
CNT but not the length. That is, it will only involve 20-dimensional matrix inversion for a (10,
10) CNT. Besides, in the recursive approach only a few elements need to be calculated, while
in the direct matrix inverting approach every element of the CNT’s Green’s functions must
be calculated. Hence this recursive approach will obviously relax the memory requirements
and enhance the computational speed, thus making the calculation for CNTs with various
helicities and lengths feasible. From our numerical results, we find that the simulated ac
conductance differs significantly from that of an infinite-length CNT. There are many peaks
on the ac conductance versus the Fermi energy curves due to the resonant transmission, while
the conductance quantization is still observable on the curves. We also show that the finite
length leads to an oscillation in the conductance as a function of the ac frequency, and compare
our simulation results with the latest experimental reports on this topic. We further investigate
the relations between this oscillation behaviour and the CNTs’ lengths, helicities and defects.
Our results can be used to describe the general features of the ac conductance in finite-length
low-dimensional systems.

We start our theoretical treatment from a general formula in order to calculate the charge
currents at electrode α in mesoscopic systems [10, 11] (let h̄ = 1):

I c
α(ω) = e

∫ +∞

−∞
dε

2π

∫ +∞

−∞
dε1

2π
Tr

[
Gr (ε + ω, ε1)

<∑
α

(ε1, ε) + G<(ε + ω, ε1)

a∑
α

(ε1, ε)

−
<∑
α

(ε + ω, ε1)Ga(ε1, ε) −
r∑
α

(ε + ω, ε1)G<(ε1, ε)

]
. (1)

Gr(<,a) are the full Green’s functions of the central CNT, and �r(<,a)
α are the self-energies

of electrode α. For small ac signals, we linearize Gr(<,a) based on its value at the steady-
state [11], that is, Gr(<,a)(ε + ω, ε1) = Gr(<,a)(ε + ω) · δ(ε + ω, ε1) + gr(<,a)(ε + ω, ε1).
Similar treatments are applied to calculate the self-energies, �r(<,a)(ε + ω, ε1) = �r(<,a)(ε +
ω) · δ(ε + ω, ε1) + σ r(<,a)(ε + ω, ε1). In previous expressions, G and � at the right-hand side
denote the Green’s functions and self-energies at the steady state, while g and σ denote those
caused by the small signals. We can accordingly write down the charge current as the sum
of the steady-state components and the small-signal ones, I c

α(ω) = I D
α + i c

α. We expand the
retarded and lesser Green’s functions by using the Dyson and Keldysh equations respectively.
After some straightforward algebra, we can obtain the expression for i c

α [10].
Within the adiabatic approximation for the input time-dependent signal, the presence of a

sinusoidal voltage with frequency ω introduces a correlation between energy ε and ε+nω in the
central CNT [12]. The expression for the self-energy σ r(<,a)(ε + ω, ε1) is rather complicated.
However, in the wide-band limit [13], we get the steady-state self-energy �r

α(ε) = −i	α/2 and
the ac components σ r

α (ε+ω, ε) = 0 and σ<
α (ε+ω, ε) = i	α ·eVα(ω)·[ fα(ε)− fα(ε+ω)]/2ω.

We, therefore, can further simplify the expression of i c
α as follows:

i c
α(ω) = e2

2π

∫ +∞

−∞
dε Tr

[
−i f +

α Vα(Gr+ − Ga)	α +
∑

β

Vβ f +
β Gr+	β Ga	α

]
. (2)

Here, f +
α represents ( fα(ε+ω)− fα(ε))/ω, with fα the equilibrium Fermi distribution function

of the α electrode, and Gr+ represents (Gr (ε + ω) − Gr (ε))/ω. The first term on the right-
hand-side of equation (2) indicates the correlated injection into the device due to the electrons
at energy ε and ε + ω, while the second term represents the correlated injection from contact α

to all the other contacts in the system.
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To perform numerical simulation, we limit the ∞ in equation (2) according to the property
of the Fermi distribution function. We can then get the ac conductance of charge current gc

αβ

based on its definition i c
α = ∑

β gc
αβVβ :

gc
αβ(ω) = e2

2π

∫ μβ+10kT

μβ−ω−10kT
dε Tr[− f +

α i(Gr+ − Ga)	αδα,β + f +
β Gr+	β Ga	α]. (3)

For the two-terminal system that we consider, we divide the central CNT into N principal layers
and employ the π -electron tight binding model [14]. We further restrict our discussion to the
ballistic transport regime, and focus on h̄ω � 1 eV below which the adiabatic approximation
for the ac voltage fits well [7]. The ac charge conductance gc

L R , which is the most interesting
physical quantity in our study, is expressed as

gc
L R(ω) = e2

2π

∫ μα+10kT

μα−ω−10kT
dε Tr[ f +

R Gr+
1N	R Ga

N1	L ]. (4)

Here Gr
1N and Ga

N1 are the full Green’s functions of the CNT which denote the electron
propagation between the rightmost layer N and leftmost layer 1. In this work we build them up
recursively by employing the lattice Green’s function [8, 9, 15]:

Gr
1N = gr

1V1,2gr
2V2,3 · · · gr

N−1VN−1,N Gr
N , (5)

where gr
1 = (ε I − H1 − �r

L )−1, gr
i = (ε I − Hi − Vi,i−1gr

i−1Vi−1,i)
−1 (i = 2, . . . , N − 1) and

Gr
N = (ε I − HN − VN,N−1gr

N−1VN−1,N − �r
R)−1. In the nearest-neighbouring tight-binding

approximation, the above equation is exact. Here we can see that this recursive approach
involves the inversion of much smaller matrices compared to Gr , the full Green’s function
of the CNT. Their dimension is determined by the number of π -electron states on a principal
layer. Take a N-layer (n, n) CNT for example, the direct matrix inversion approach requires
O(n3 N3) steps and work space ∼n2 N2, while our approach requires O(n3 N) steps and work
space ∼n2. Hence this recursive approach reduces the computational time from O(L3) to O(L),
where L is the length of the carbon nanotube.

Considering the current conservation and the gauge invariance condition [16], we have to
take the displacement currents into account for ac conductance [16]. Following the formalism
in [17], we write the total ac conductance as

gαβ(ω) = gc
αβ(ω) + gd

αβ(ω), (6)

where gd
αβ(ω) = − ∑

α gc
αβ(ω)

∑
β gc

αβ(ω)/
∑

αβ gc
αβ(ω).

Our numerical simulation results are as follows. In figure 1, we present the ac conductance
and the density of states (DOS) of a (10, 10) CNT with 100 principal layers as a function of
the Fermi energy at the low-frequency limit. h̄ω is set to be 10−6 eV. For dc transport, it is
known that a series of steps are observable on the conductance versus Fermi energy curves for
infinite-length CNTs [5, 6, 14]. These steps mean that at larger energies, more subbands begin
to contribute to the electronic conduction. Therefore, the dc conductance increases step-by-step
at the subband edges of the infinite-length nanotubes, where the peaks of the DOS appear. In
the finite-length nanotubes, we are still able to identify these steps, but their profile is no longer
clear. On the other hand, compared with the ac conductance of infinite-length nanotubes at the
low-frequency limit [7], more peaks are observed on the conductance curves. The finding is
attributed to the presence of more peaks on the DOS curves of the finite-length CNT. Thus
at the low-frequency limit resonant transmission occurs. Our observation of this resonant
transmission behaviour is in accordance with that indicated in the dc transport of finite-size
CNTs [18]. Figure 2 shows the ac conductance components gc and gd as a function of the
Fermi energy at higher frequency. The symmetric centres of the conductance curves for both
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Figure 1. AC conductance and DOS of a 100-layer (10, 10) CNT versus the Fermi energy. h̄ω is
set to be 10−6 eV. This CNT is about 13 nm.

Figure 2. AC conductance component gc and gd for a 100-layer (10, 10) CNT versus the Fermi
energy operated at ac frequencies. h̄ω = 1 eV.

the real part (dissipative part) and imaginary part (non-dissipative part) begin to shift from zero.
Careful calculation shows that the deviations are exactly half of the value of the ac frequency ω

and are independent of the helicities and lengths of CNTs. These deviations are caused by the
ac coupling of a CNT with the electrodes. The expression for self-energy � shows that photon-
assisted transport causes the effective Fermi surface to shift from 0 to −ω/2. The symmetric
centres of the conductance curves shift accordingly. In figure 3, we present the ac conductance
component due to the charge current gc and that due to the displacement current gd for a 100-
layer (10, 10) CNT, as a function of ac frequency h̄ω. We observe that the displacement current
contributes significantly to the total current at larger ac frequency; thus, we cannot neglect this
current when we calculate the total ac conductance.

We also investigate how the length and helicity of a CNT affect its ac conductance. Figure 4
shows both the real and imaginary parts of the ac conductance for (5, 5) CNTs with different
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Figure 3. AC conductance component gc and gd as a function of h̄ω for a (10, 10) tube with 100
layers.

Figure 4. Total conductance gL R as a function of ac frequency for (5, 5) CNTs with different
lengths.

lengths, while figure 5 shows the same for similar-length CNTs with different helicity. As we
know, if the value of the imaginary part of gL R(ω) is negative, the CNT shows a capacitive
behaviour. Otherwise, it shows an inductive behaviour. When the ac frequency increases from
zero, the CNT shows inductive behaviour because the ac-induced displacement current tends
to attenuate the total current. This result leads to an increased imaginary part. As the ac
frequency continues to increase, the conductance begins to oscillate between the inductive and
capacitive behaviours, while the tangent of the conductance curves increases (the real part)
or decreases (the imaginary part) monotonically. When the ac frequency exceeds the critical
point, the conductance becomes absolutely capacitive. Photon-assisted transport is responsible
for the variation [7]. A new phenomenon here for a finite-length CNT is its periodical-like
behaviour on the curves. This phenomenon is not observed in an infinite-length CNT. The
oscillation period is related to the length and helicity of a CNT. Generally speaking, the longer
a CNT is, the more rapidly the conductance oscillates with the ac frequency. We attribute
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Figure 5. Total conductance gL R as a function of frequency for CNTs with different helicity and
the same lengths. Here the lengths of 115-layer (9, 0) CNT and 200-layer (5, 5) CNT are about
25 nm.

Figure 6. Total conductance gL R as a function of frequency for a (5, 5)–(9, 0) heterojunction, with
200 (5, 5) layers on the left side and 115 (9, 0) layers on the right side.

this oscillation behaviour to the combination of photon-assisted ac transport and finite-length
quantum interference. Recently, an experimental report on the ac frequency response of a
CNT field effect transistor (FET) has shown oscillation behaviour in the conductance versus
ac frequency curves [19]. This kind of oscillation seems quite similar to that demonstrated
in our simulations. However, due to the lack of experiments on CNTs with different lengths,
whether this oscillation is just the finite-length effect we predict needs further experimental
verifications.

The ac conductance as a function of h̄ω for a (5, 5)–(9, 0) metal–metal hybrid knee
structure is plotted in figure 6. One possible application of the knee interconnects is for wiring
various components in nanoscale circuits. There are 200 layers of (5, 5) CNTs on the left side
of the knee structure and 115 layers of (9, 0) CNTs on the right side. Pentagon–heptagon-pair
topological defects exist in the central heterojunction. We employ the π -electron tight-binding
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treatment in the calculation, which is verified by the calculation of a quantum-mechanical
complete neglect of differential overlap [20, 21]. Figure 5 shows that for the finite-length knee
structure, no gap exists near the Fermi level of the DOS, and the conductance is greater than
zero at the low-frequency end. This situation differs from that in the infinite-length CNT [22].

In summary, we have investigated the ac conductance of finite-length carbon nanotubes
by using the nonequilibrium Green’s function technique. We have shown that the finite
length of a CNT will cause many peaks on the conductance versus energy curves, while the
quantized conductance is still observable. The finite length also introduces oscillations on
the conductance versus ac frequency curves. The peak positions and oscillation periods vary
with CNTs of different helicities and lengths. We should be able to detect these phenomena
experimentally.
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